Thursday, August 21, 2008

Solar vehicles

Development of a solar powered car has been an engineering goal since the 1980s. The World Solar Challenge is a biannual solar-powered car race, where teams from universities and enterprises compete over 3,021 kilometres (1,877 mi) across central Australia from Darwin to Adelaide. In 1987, when it was founded, the winner's average speed was 67 kilometres per hour (42 mph) and by 2007 the winner's average speed had improved to 90.87 kilometres per hour (56.46 mph).[100] The North American Solar Challenge and the planned South African Solar Challenge are comparable competitions that reflect an international interest in the engineering and development of solar powered vehicles.[101][102]
In 1975, the first practical solar boat was constructed in England.[103] By 1995, passenger boats incorporating PV panels began appearing and are now used extensively.[104] In 1996, Kenichi Horie made the first solar powered crossing of the Pacific Ocean, and the sun21 catamaran made the first solar powered crossing of the Atlantic Ocean in the winter of 2006–2007.[105] There are plans to circumnavigate the globe in 2010.[106]

Helios UAV in solar powered flight
In 1974, the unmanned Sunrise II plane inaugurated the era of solar flight. In 1980, the Gossamer Penguin made the first piloted flights powered solely by photovoltaics. This was quickly followed by the Solar Challenger which demonstrated a more airworthy design with its crossing of the English Channel in July 1981. Developments then turned back to unmanned aerial vehicles (UAV) with the Pathfinder (1997) and subsequent designs, culminating in the Helios which set the altitude record for a non-rocket-propelled aircraft at 29,524 metres (96,860 ft) in 2001.[107] The Zephyr, developed by BAE Systems, is the latest in a line of record-breaking solar aircraft, making a 54-hour flight in 2007, and month-long flights are envisioned by 2010.[108]
A solar balloon is a black balloon that is filled with ordinary air. As sunlight shines on the balloon, the air inside is heated and expands causing an upward buoyancy force, much like an artificially-heated hot air balloon. Some solar balloons are large enough for human flight, but usage is generally limited to the toy market as the surface-area to payload-weight ratio is relatively high.[109]
Solar sails are a proposed form of spacecraft propulsion using large membrane mirrors to exploit radiation pressure from the Sun. Unlike rockets, solar sails require no fuel. Although the thrust is small compared to rockets, it continues as long as the Sun shines onto the deployed sail and in the vacuum of space significant speeds can eventually be achieved.[110]
The High-altitude airship (HAA) is an unmanned, long-duration, lighter-than-air vehicle using helium gas for lift, and thin-film solar cells for power. The United States Department of Defense Missile Defense Agency has contracted Lockheed Martin to construct it to enhance the Ballistic Missile Defense System (BMDS).[111] Airships have some advantages for solar-powered flight: they do not require power to remain aloft, and an airship's envelope presents a large area to the Sun.

Generation of tidal energy


Tidal power is the only form of energy which derives directly from the relative motions of the Earth-Moon system, and to a lesser extent from the Earth-Sun system. The tidal forces produced by the Moon and Sun, in combination with Earth's rotation, are responsible for the generation of the tides. Other sources of energy originate directly or indirectly from the Sun, including fossil fuels, conventional hydroelectric, wind, biofuels, wave power and solar. Nuclear is derived using radioactive material from the Earth, geothermal power uses the heat of magma below the Earth's crust.
Tidal energy is generated by the relative motion of the Earth, Sun and the Moon, which interact via gravitational forces. Periodic changes of water levels, and associated tidal currents, are due to the gravitational attraction by the Sun and Moon. The magnitude of the tide at a location is the result of the changing positions of the Moon and Sun relative to the Earth, the effects of Earth rotation, and the local shape of the sea floor and coastlines.
A tidal energy generator uses this phenomenon to generate energy. The stronger the tide, either in water level height or tidal current velocities, the greater the potential for tidal energy generation.
Tidal movement causes a continual loss of mechanical energy in the Earth-Moon system due to pumping of water through the natural restrictions around coastlines, and due to viscous dissipation at the seabed and in turbulence. This loss of energy has caused the rotation of the Earth to slow in the 4.5 billion years since formation. During the last 620 million years the period of rotation has increased from 21.9 hours to the 24 hours [3] we see now; in this period the Earth has lost 17% of its rotational energy. Tidal power may take additional energy from the system, increasing the rate of slowing over the next millions of years.

Solar electricity

Sunlight can be converted into electricity using photovoltaics (PV), concentrating solar power (CSP), and various experimental technologies. PV has mainly been used to power small and medium-sized applications, from the calculator powered by a single solar cell to off-grid homes powered by a photovoltaic array. For large-scale generation, CSP plants like SEGS have been the norm but recently multi-megawatt PV plants are becoming common. Completed in 2007, the 14 MW power station in Clark County, Nevada and the 20 MW site in Beneixama, Spain are characteristic of the trend toward larger photovoltaic power stations in the US and Europe.

Photovoltaics

A solar cell, or photovoltaic cell (PV), is a device that converts light into direct current using the photoelectric effect. The first solar cell was constructed by Charles Fritts in the 1880s.[62] Although the prototype selenium cells converted less than 1% of incident light into electricity, both Ernst Werner von Siemens and James Clerk Maxwell recognized the importance of this discovery.[63] Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the silicon solar cell in 1954.[64] These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%.[65]
The earliest significant application of solar cells was as a back-up power source to the Vanguard I satellite, which allowed it to continue transmitting for over a year after its chemical battery was exhausted.[66] The successful operation of solar cells on this mission was duplicated in many other Soviet and American satellites, and by the late 1960s, PV had become the established source of power for them.[67] Photovoltaics went on to play an essential part in the success of early commercial satellites such as Telstar, and they remain vital to the telecommunications infrastructure today.[68]
The high cost of solar cells limited terrestrial uses throughout the 1960s. This changed in the early 1970s when prices reached levels that made PV generation competitive in remote areas without grid access. Early terrestrial uses included powering telecommunication stations, off-shore oil rigs, navigational buoys and railroad crossings.[69] These off-grid applications have proven very successful and accounted for over half of worldwide installed capacity until 2004.[37]

Building-integrated photovoltaics cover the roofs of the increasing number of homes.
The 1973 oil crisis stimulated a rapid rise in the production of PV during the 1970s and early 1980s.[70] Economies of scale which resulted from increasing production along with improvements in system performance brought the price of PV down from 100 USD/watt in 1971 to 7 USD/watt in 1985.[71] Steadily falling oil prices during the early 1980s led to a reduction in funding for photovoltaic R&D and a discontinuation of the tax credits associated with the Energy Tax Act of 1978. These factors moderated growth to approximately 15% per year from 1984 through 1996.[72]
Since the mid-1990s, leadership in the PV sector has shifted from the US to Japan and Germany. Between 1992 and 1994 Japan increased R&D funding, established net metering guidelines, and introduced a subsidy program to encourage the installation of residential PV systems.[73] As a result, PV installations in the country climbed from 31.2 MW in 1994 to 318 MW in 1999,[74] and worldwide production growth increased to 30% in the late 1990s.[75]
Germany has become the leading PV market worldwide since revising its Feed-in tariff system as part of the Renewable Energy Sources Act. Installed PV capacity has risen from 100 MW in 2000 to approximately 4,150 MW at the end of 2007.[76][77] Spain has become the third largest PV market after adopting a similar feed-in tariff structure in 2004, while France, Italy, South Korea and the US have seen rapid growth recently due to various incentive programs and local market conditions.

Concentrating solar power

Concentrated sunlight has been used to perform useful tasks since the time of ancient China. A legend claims that Archimedes used polished shields to concentrate sunlight on the invading Roman fleet and repel them from Syracuse.[79] Auguste Mouchout used a parabolic trough to produce steam for the first solar steam engine in 1866, and subsequent developments led to the use of concentrating solar-powered devices for irrigation, refrigeration and locomotion.[80]
Concentrating Solar Power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. The concentrated light is then used as a heat source for a conventional power plant. A wide range of concentrating technologies exist; the most developed are the solar trough, parabolic dish and solar power tower. These methods vary in the way they track the Sun and focus light. In all these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage.[81]

The PS10 concentrates sunlight from a field of heliostats on a central tower.
A solar trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector's focal line. The reflector is made to follow the Sun during the daylight hours by tracking along a single axis. Trough systems provide the best land-use factor of any solar technology.[82] The SEGS plants in California and Acciona's Nevada Solar One near Boulder City, Nevada are representatives of this technology.[83][84]
A parabolic dish system consists of a stand-alone parabolic reflector that concentrates light onto a receiver positioned at the reflector's focal point. The reflector tracks the Sun along two axes. Parabolic dish systems give the highest efficiency among CSP technologies.[85] The 50 kW Big Dish in Canberra, Australia is an example of this technology.[83]
A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers are less advanced than trough systems but offer higher efficiency and better energy storage capability.[83] The Solar Two in Barstow, California and the Planta Solar 10 in Sanlucar la Mayor, Spain are representatives of this technology.

Experimental solar power

A solar updraft tower (also known as a solar chimney or solar tower) consists of a large greenhouse that funnels into a central tower. As sunlight shines on the greenhouse, the air inside is heated, and expands. The expanding air flows toward the central tower, where a turbine converts the air flow into electricity. A 50 kW prototype was constructed in Ciudad Real, Spain and operated for eight years before decommissioning in 1989.[87]
A solar pond is a pool of salt water (usually 1–2 m deep) that collects and stores solar energy. Solar ponds were first proposed by Dr. Rudolph Bloch in 1948 after he came across reports of a lake in Hungary in which the temperature increased with depth. This effect was due to salts in the lake's water, which created a "density gradient" that prevented convection currents. A prototype was constructed in 1958 on the shores of the Dead Sea near Jerusalem.[88] The pond consisted of layers of water that successively increased from a weak salt solution at the top to a high salt solution at the bottom. This solar pond was capable of producing temperatures of 90 °C in its bottom layer and had an estimated solar-to-electric efficiency of two percent.
Thermoelectric, or "thermovoltaic" devices convert a temperature difference between dissimilar materials into an electric current. First proposed as a method to store solar energy by solar pioneer Mouchout in the 1800s,[89] thermoelectrics reemerged in the Soviet Union during the 1930s. Under the direction of Soviet scientist Abram Ioffe a concentrating system was used to thermoelectrically generate power for a 1 hp engine.[90] Thermogenerators were later used in the US space program as an energy conversion technology for powering deep space missions such as Cassini, Galileo and Viking. Research in this area is focused on raising the efficiency of these devices from 7–8% to 15–20%.[91]
Space solar power systems would use a large solar array in geosynchronous orbit to collect sunlight and beam this energy in the form of microwave radiation to receivers (rectennas) on Earth for distribution. This concept was first proposed by Dr. Peter Glaser in 1968 and since then a wide variety of systems have been studied with both photovoltaic and concentrating solar thermal technologies being proposed. Although still in the concept stage, these systems offer the possibility of delivering power approximately 96% of the time.

Solar energy

Solar energy refers to the utilization of the radiant energy from the Sun. Solar power is used interchangeably with solar energy, but refers more specifically to the conversion of sunlight into electricity, either by photovoltaics and concentrating solar thermal devices, or by one of several experimental technologies such as thermoelectric converters, solar chimneys or solar ponds.
Solar energy and shading are important considerations in building design. Thermal mass is used to conserve the heat that sunshine delivers to all buildings. Daylighting techniques optimize the use of light in buildings. Solar water heaters heat swimming pools and provide domestic hot water. In agriculture, greenhouses expand growing seasons and pumps powered by solar cells (known as photovoltaics) provide water for grazing animals. Evaporation ponds are used to harvest salt and clean waste streams of contaminants.
Solar distillation and disinfection techniques produce potable water for millions of people worldwide. Simple applications include clotheslines and solar cookers which concentrate sunlight for cooking, drying and pasteurization. More sophisticated technologies concentrate sunlight for high-temperature material testing, metal smelting and industrial chemical production. A range of experimental solar vehicles provide ground, air and sea transportation
source: http://en.wikipedia.org

Tuesday, August 19, 2008

Briket Batubara Sebagai Alternatif Pengganti Minyak Tanah


Akhir-akhir ini harga bahan bakar minyak dunia meningkat pesat yang berdampak pada meningkatnya harga jual bahan bakar minyak termasuk minyak tanah. Minyak tanah di Indonesia yang selama ini di subsidi menjadi beban yang sangat berat bagi pemerintah Indonesia karena nilai subsidinya meningkat pesat menjadi lebih dari 49 trilun rupiah per tahun dengan penggunaan lebih kurang 10 juta kilo liter per tahun. Untuk mengurangi beban subsidi tersebut maka pemerintah berusaha mengurangi subsidi yang ada dialihkan menjadi subsidi langsung kepada masyarakat miskin. Namun untuk mengantisipasi kenaikan harga BBM dalam hal ini Minyak Tanah diperlukan bahan bakar alternatif yang murah dan mudah didapat. Briket batubara merupakan bahan bakar padat yang terbuat dari batubara, bahan bakar padat ini murupakan bahan bakar alternatif atau merupakan pengganti Minyak tanah yang paling murah dan dimungkinkan untuk dikembangkan secara masal dalam waktu yang relatif singkat mengingat teknologi dan peralatan yang digunakan relatif sederhana. 

Briket Batubara

Briket batubara adalah bahan bakar padat yang terbuat dari batubara dengan sedikit campuran seperti tanah liat dan tapioka. Briket batubara mampu menggantikan sebagian dari kegunaan Minyak tanah sepeti untuk : Pengolahan makanan, pengeringan, pembakaran, dan pemanasan. Bahan baku utama Briket batubara adalah batubara yang sumbernya berlimpah di Indonesia dan mempunyai cadangan untuk selama lebih kurang 150 tahun. Teknologi pembuatan briket tidaklah terlalu rumit dan dapat dikembangkan oleh masyarakat maupun pihak swasta dalam waktu singkat. Sebetulnya di Indonesia telah mengembangkan briket batubara sejak tahun 1994 namun tidak dapat berkembang dengan baik mengingat Minyak tanah masih disubsidi sehingga harganya masih sangat murah, sehingga masyarakat lebih memilih Minyak tanah untuk bahan bakar sehari-hari. Namun dengan kenaikan harga BBM per 1 Oktober 2005, mau tidak mau masyasrakat harus berpaling pada bahan bakar alternatif yang lebih murah seperti Briket Batubara.

Jenis Briket batubara

1. Jenis Berkarbonisasi (super), jenis ini mengalami terlebih dahulu proses dikarbonisasi sebelum menjadi Briket. Dengan proses karbonisasi zat-zat terbang yang terkandung dalam Briket Batubara tersebut diturunkan serendah mungkin sehingga produk akhirnya tidak berbau an berasap, namun biaya produksi menjadi meningkat karena pada Batubara tersebut terjadi rendemen sebesar 50%. Briket ini cocok untuk digunakan untuk keperluan rumah tangga serta lebih aman dalam penggunaannya

2. Jenis Non Karbonisasi (biasa), jenis yang ini tidak mengalamai dikarbonisasi sebelum diproses menjadi Briket dan harganyapun lebih murah. Karena zat terbangnya masih terkandung dalam Briket Batubara maka pada penggunaannya lebih baik menggunakan tungku (bukan kompor) sehingga akan menghasilkan pembakaran yang sempurna dimana seluruh zat terbang yang muncul dari Briket akan habis terbakar oleh lidah api dipermukaan tungku. Briket ini umumnya digunakan untuk industri kecil

Produsen terbesar Briket Batubara di Indonesia saat ini adalah PT. Tambang Batubara Bukit Asam (Persero), atau PT. BA yang mempunyai 3 pabrik yaitu di Tanjung Enim Sumatera Selatan, Bandar Lampung dan Gresik Jawa Timur dengan kapasitas terpasang 115.000 ton pertahun. Disamping PT. BA terdapat beberpa perusahaan swasta lain yang meproduksi Briket Batubara namun jumlahnya jauh lebih kecil dibanding PT. BA dan belum berproduksi secara kontinyu.Dengan adanya kenaikan BBM khususnya Minyak Tanah dan Solar, tentunya penggunaan Briket Batubara oleh kalangan rumah tangga maupun industri kecil/menengah akan lebih ekonomis dan menguntungkan, namun demikian kemampuan produksi dari PT. BA. masih sangat kecil, untuk mengatasi kekurangan tersebut diharapkan partisipasi serta keikutsertaan pihak swasta untuk memproduksi dan mensosialisasikan penggunaan Briket Batubara disetiap daerah.

Keunggulan Briket Batubara
1. Lebih murah
2. Panas yang tinggi dan kontinyu sehingga sangat baik untk pembakaran yang lama
3. Tidak beresiko meledak/terbakar
4. Tidak mengeluarkan sauara bising serta tidak berjelaga
5. Sumber Batubara berlimpah

Perbandingan Pemakaian Minyak Tanah dengan BriketRumah tangga untuk 3 ltr/hari Minyak tanah Rp. 9000/hari; Briket Rp. 5400/hari; Penghematan Rp. 3600/hari. Warung makan untuk 10 ltr/hari Minyak Tanah Rp. 30.000/hari; Briket Rp. 18.000/hari; Penghematan Rp. 12.000/hari. Industri kecil untuk 25 ltr/hari Minyak Tanah Rp. 75.000/hari; Briket 45.000/hari; Penghematan Rp. 30.000/hariIndustri kecil untuk 100 ltr/hari Minyak Tanah Rp. 2.000.000/hari; Briket Rp. 1.502.450/hari; Penghematan Rp. 497.550/hari.

Parameter Antara Minyak Tanah dan BriketNilai kalori : Minyak Tanah 9.000 kkal/ltr; Briket : 5.400 kkal/kgEkivalen : Minyak Tanah 1 ltr; Briket 1.50 kgBiaya : Minyak Tanah Rp. 2800,- Briket : Rp. 1.300

Jenis dan Ukuran Briket batubara1. Bentuk telur : sebesar telu ayam2. Bentuk kubus : 12,5 x 12,5 x 5 cm3. Bentuk selinder : 7 cm (tinggi) x 12 cm garis tengah

Briket bentuk telur cocok untuk keperluan rumah tangga atau rumah makan, sedangkan bentuk kubus dan selinder digunakan untuk kalangan industri kecil/menengah

Kompor/Tungku Briket Batubara

Penggunaan Briket Batubara harus dibarengi serta disiapkan Kompor atau Tungku, jenis dan ukuran Kompor harus disesuaikan dengan kebutuhan. Pada prinsipnya Kompor/Tungku terdidri atas 2 jenis :
1. Tungku/Kompor portabel, jenis ini pada umumnya memuat briket antara 1 s/d 8 kg serta dapat dipindah-pindahkan. Jenis ini digunakan untuk keperluan rumah tangga atau rumah makan
2. Tungku/Kompor Permanen, biasanya memuat lebih dari 8 kg briket dibuat secara permanen. Jenis ini dipergunakan untuk industri kecil/menengah

Persyaratan Kompor/tungku harus memiliki :
1. Ada ruang bakar untuk briket
2. Adanya aliran udara (oksigen) dari lubang bawah menuju lubang atas dengan melewati raung bakar briket yang terdiri dari aliran udara primer dan sekunder
3. Ada rung untuk menampung abu briket yang terleak di bawah ruang bakar briket

Pengembangan produksi Briket batubara dan kompor/tungku sampai saat ini pihak BPP Teknologi melalui Balai Besar Teknologi Energi (B2TE) telah lama mengembangkan dan men-disain mesin untuk memproduksi Briket Batubara skala kecil/menengah dengan kapsitas produksi sebesar 2 s/d 8 ton/hari. Dengan demikian industri briket sakala kecil/menengah ini diharapkan bisa tersebar di sentra-sentra pengguna Briket Batubara sehingga mudah dalam penyediaan briket secara kontinyu. Disamping itu pula BPP Teknologi telah mengembangkan jenis-jenis Kompor/Tungku Briket untuk keperluan rumah tangga, rumah makan serta industri kecil/menengah. Penjelasan lengkap silahkan akses http://www.ristek.go.id/
(sumber : PT. BA, BPPT)

Lonjakan Harga Minyak, Momentum Diversifikasi Energi

Harga minyak terus membubung tinggi dan melahirkan rekor-rekor baru harga minyak. Ketika lonjakan harga minyak terjadi pada tahun 1974, 1979 dan 1990, Indonesia sebagai negara pengekspor minyak ikut kebagian rezeki nomplok dengan kenaikan harga tersebut. Namun lonjakan kali ini "ceritanya" lain. Gejolak harga minyak ini dapat menggoyahkan pilar pilar perekonomian nasional. Saat ini Indonesia hanya menghasilkan minyak kurang dari 1 juta barrel per hari. Nilai ini turun drastis dari 1,4 juta barrel per hari pada tahun 1999, sejak dimulainya upaya restrukturisasi perminyakan nasional. Sementara itu, jumlah kebutuhan minyak nasional sekitar 1,2 juta barrel per hari. Kondisi ini diperparah dengan pola pengelolaan sumber energi nasional.

Data dari Kementerian Energi dan Sumber Daya Mineral (ESDM) menunjukkan bahwa lebih dari separo kebutuhan energi Indonesia dipenuhi dari minyak bumi. Dari keseluruhan jumlah konsumsi energi yang mencapai 700 juta SBM (setara barel minyak) per tahun, minyak bumi memasok sebesar 57% (400 juta barel), disusul gas bumi 25%, dan batu bara 13%, sedangkan sisanya 5% dipenuhi dari tenaga air, panas bumi, biomassa, surya dan sebagainya. Kita memiliki cadangan total minyak bumi, yang meliputi cadangan terbukti dan cadangan potensial, sekitar 10 milyar barel.

Jika tingkat produksi minyak rata-rata sebesar 400 juta barel per tahun, maka cadangan minyak akan kering dalam 25 tahun. Setelah itu, kita harus mengimpor seluruh kebutuhan minyak kita. Jika komposisi pasokan energi masih belum berubah secara signifikan dari kondisi saat ini, maka dapat dipastikan bahwa kondisi ekonomi Indonesia akan "terjun bebas" karena energi merupakan penggerak utama roda perekonomian. Dua puluh lima tahun bukanlah waktu yang panjang. Oleh karenanya, upaya perubahan komposisi pasokan energi kita harus diubah mulai saat ini, tidak boleh ditunda-tunda lagi. Lonjakan harga minyak kali ini merupakan momentum besar untuk melakukan upaya diversifikasi energi.

Pilihan sumber energi pengganti minyak yang terdekat adalah gas alam. Dari sisi penggunaannya, gas alam memiliki banyak kemiripan dengan minyak bumi sehingga pengalihan dari penggunaan minyak ke gas alam relatif mudah dilakukan dibandingkan dengan energi lain. Tingkat penggunaan sumber energi ini saat ini sekitar 170 juta SBM, atau 25 % dari jumlah pasokan energi per tahun. Jumlah total cadangan gas bumi Indonesia, baik cadangan terbukti maupun potensial, yang telah diketahui sekitar 390 trilyun kaki kubik atau sekitar 65 milyar SBM. Jadi, jika seluruh energi saat ini diganti dengan gas bumi, maka cadangan gas alam kita cukup untuk sekitar 90 tahun apabila tingkat penggunaan energi sebesar saat ini, 700 SBM per tahun.

Pilihan sumber energi pengganti minyak yang terdekat adalah gas alam. Dari sisi penggunaannya, gas alam memiliki banyak kemiripan dengan minyak bumi sehingga pengalihan dari penggunaan minyak ke gas alam relatif mudah dilakukan dibandingkan dengan energi lain. Tingkat penggunaan sumber energi ini saat ini sekitar 170 juta SBM, atau 25 % dari jumlah pasokan energi per tahun. Jumlah total cadangan gas bumi Indonesia, baik cadangan terbukti maupun potensial, yang telah diketahui sekitar 390 trilyun kaki kubik atau sekitar 65 milyar SBM. Jadi, jika seluruh energi saat ini diganti dengan gas bumi, maka cadangan gas alam kita cukup untuk sekitar 90 tahun apabila tingkat penggunaan energi sebesar saat ini, 700 SBM per tahun.

Selain gas dan batu bara, energi nuklir merupakan sumber energi potensial yang sampai saat ini belum dimanfaatkan di Indonesia. Negeri ini merupakan satu-satunya negara dengan penduduk besar, di atas 200 juta, yang belum memanfaatkan energi ini. Energi nuklir telah digunakan di banyak negara dan rekam jejak penggunaan energi ini pun telah tergelar di hadapan kita.

Jepang, misalnya, telah memiliki sejarah pemanfaatan energi yang tidak melepaskan gas karbon dioksida ini sejak tahun 1966. Saat ini Negeri Sakura ini memiliki 52 buah reaktor nuklir yang sedang beroperasi dengan total kapasitas daya sekitar 46 000 MW, lebih dari sepertiga total kapasitas daya listrik yang dimiliki. Kita tinggal menghitung secara rasional keuntungan dan tantangan opsi nuklir ini dibandingkan dengan sumber energi lain.
Pilihan ideal bagi Indonesia sebenarnya terletak pada energi baru dan terbarukan (EBT). Indonesia memiliki potensi besar sumber energi jenis ini seperti panas bumi, biomassa, mikrohidro, angin, surya, gambut, pasang surut dan gelombang. Di tinjau dari dampaknya terhadap lingkungan, energi ini termasuk energi yang ramah lingkungan. Sebagai daerah vulkanik, wilayah lndonesia termasuk negara kaya akan sumber energi panas bumi. Jalur gunung api membentang dari ujung Pulau Sumatra Sepanjang Pulau Jawa-Bali, NTT, NTB, Halmahera dan Pulau Sulawesi.
Menurut data yang dikeluarkan oleh Direktorat Jendral Listrik dan Pengembangan Energi, Indonesia memiliki potensi panas bumi sebesar 20 ribu MW, lebih dari dua pertiga total kapasitas daya terpasang listrik PLN saat ini yang sekitar 28 ribu MW. Dari total potensi tersebut, sektar 8 ribu MW ada di pulau Jawa, 5 ribu MW di pulau sumatera dan sisanya di pulau-pulau lain. Energi dari perut bumi ini baru dimanfaatkan sebesar 887 MW atau 4,4 % dari seluruh potensi yang ada.
Sebagai negara tropis, Indonesia kaya akan biomassa. Kita memiliki potensi biomassa sebesar 50 000 MW yang tersebar di seluruh wilayah negeri ini. Dari jumlah sebesar ini, baru dimanfaatkan sebesar 313 MW, atau sebesar 0,62 % dari potensi yang ada. Sementara itu, energi baru dan terbarukan yang lain dapat dikatakan belum disentuh.

Dari Mana Memulainya

Semua pihak kelihatannya akan menyetujui upaya diversifikasi sumber energi. Namun, pertanyaan yang sulit dijawab adalah siapa pelopor dan dari mana mulainya. Pihak industri, utamanya swasta, merupakan pengguna energi dalam jumlah besar. Sekitar 40% energi yang dihasilkan digunakan oleh industri. Sisanya digunakan untuk transportasi, rumah tangga dan sebagainya. Industri menentukan pilihan jenis energi berdasarkan mekanisme pasar secara rasional.
Realitas saat ini menunjukkan bahwa minyak masih merupakan pilihan paling menguntungkan. Lonjakan harga minyak dapat menurunkan tingkat daya saing minyak terhadap energi lain. Kendati demikian, lonjakan kali ini belum cukup untuk mengubah komposisi pilihan sumber energi secara signifikan.
Perubahan pilihan energi tidak dapat dilakukan dalam waktu singkat, karena diperlukan perubahan fasilitas dengan investasi tidak kecil. Perubahan ini, tentunya, disertai resiko yang tidak kecil. Oleh karena itu, upaya diversifikasi sumber energi ini tidak dapat diserahkan kepada pihak swasta sepenuhnya. Untuk memulai upaya diversifikasi sumber energi, pemerintah perlu mengambil inisiatif awal. Ada beberapa langkah yang dapat dilakukan pemerintah untuk memacu upaya ini.
Pertama, menciptakan suasana yang mendukung bagi pengalihan sumber energi dari minyak. Pemerintah dapat memberikan insentif, misalnya berupa keringanan pajak bagi industri pengguna energi selain minyak.. Tingkat pengurangan pajak ini tentunya disesuaikan dengan jenis sumber energi yang digunakan. Insentif tertinggi sebaiknya diberikan kepada pengguna sumber energi dari jenis EBT.
Kedua, langkah percontohan. Bagi para calon pengguna, contoh nyata merupakan faktor yang menentukan karena daya pikat sebuah contoh nyata melebihi argumentasi kata kata berapa pun jumlahnya. Lebih lebih di negeri dengan tingkat ketidakpastian yang sangat tinggi ini. Percontohan dapat dilakukan oleh badan usaha milik negara (BUMN) di mana pemerintah memiliki kewenangan penuh untuk menentukan arah kebijakan. Pembangkit PLN sebanyak 34% digerakkan oleh BBM. Panas bumi baru menempati 2%. Oleh karena itu, PLN perlu mempelopori penggunaan panas bumi.
Hasil kajian JICA menunjukkan bahwa apabila listrik dibeli dengan harga 8 sen dollar per kwh, investor akan berebut untuk menggali panas bumi Indonesia. Angka ini jauh lebih murah dari biaya produksi listrik menggunakan minyak yang telah melampaui 15 sen dollar AS per kwh. Selama ini, PLN memerlukan payung hukum yang lebih kuat untuk mempromosikan panas bumi karena harga listrik panas bumi ini masih lebih mahal dibandingkan listrik dari batu bara. Pemerintah baru saja mengeluargkan peraturan menteri energi dan sumber daya mineral no 14 tahun 2008 tertanggal 9 mei 2008 tentang harga jual listrik yang dibangkitkan dari panas bumi, Dengan berlandaskan aturan yang baru ini, harga jual listrik panas bumi pada kisaran 7-8 sen dollar AS per kwh. Diharapkan bahwa ini dapat menjadi payung hukum bagi PLN dalam menggali potensi panas bumi di tanah air.
Ketiga, meningkatkan kapabilitas teknologi nasional di bidang energi.. Teknologi energi mencakup teknologi-teknologi untuk studi kelayakan, desain, konstruksi serta pengoperasian fasilitas. Pemerintah perlu mengalokasikan sumber daya yang memadahi untuk meningkatkan kapabilitas ini. Ada beberapa BUMN dan institusi pemerintah yang terlibat seperti Pertamina, PLN, kementerian ESDM, BPPT dan sebagainya. Oleh karena itu, pemerintah perlu melakukan evaluasi dan koordinasi untuk meningkatkan kapabilitas teknologi nasional di bidang ini.
Untuk merealisasikan upaya diversifikasi energi nasional, ada satu syarat mutlak yang harus ada yaitu kepemimpinan nasional dengan visi jangka panjang. Hal ini dikarenakan kerja keras ini tidak akan membuahkan hasil dalam waktu singkat. Upaya ini ibarat menanam pohon kelapa yang boleh jadi penanamnya tidak memetik hasilnya secara langsung. Hasil jerih payah ini akan dirasakan oleh generasi mendatang. Ini lah rasanya yang sulit dicari di negeri ini.

Sumber: Rohadi Awaluddin, Peneliti ISTECS

Sumber Energi Alternatif Menuju Ketahanan Energi Nasional (Executive Summary)

(Kedeputian Bidang Kajian Lemhannas RI), 2006

Kebutuhan energi merupakan sesuatu yang tidak dapat terpisahkan dari kehidupan manusia saat ini, energi mempunyai peranan penting dalam kehidupan sosial, ekonomi dan lingkungan yang berkelanjutan sesuai kesepakatan dunia dalam World Summit on Sustainable Development (WSSD).
Pemakaian energi dunia untuk waktu mendatang seperti diperkirakan Energy Information Administration (EIA) hingga tahun 2025 masih didominasi oleh bahan bakar dari fosil: minyak, gas alam dan batubara, untuk energi terbarukan masih relatif sedikit. Sedangkan dari segi pemakaian, sumber energi minyak secara global didominasi untuk transportasi, dan ini sampai 2025 diperkirakan masih terus berlanjut meningkat, sedangkan untuk daerah komersial dan tempat tinggal dapat dikatakan tidak banyak perubahan.
Kebutuhan listrik dunia diproyeksikan akan meningkat dari 14.275 milyar watt ditahun 2002 melonjak menjadi 26.018 milyar watt ditahun 2025, dan untuk mendapatkan energi listrik tersebut sebagian besar adalah dari batubara yaitu hampir 40%, diikuti dengan gas yang semakin meningkat.
Di Asia diproyeksikan kebutuhan energi akan meningkat dari 110 quadrilliun Btu (Qbtu) ditahun 2002 menjadi 221 QBtu di tahun 2025 atau meningkat dua kali lipat dalam jangka waktu 23 tahun. Dari peningkatan yang demikian tinggi tersebut, China merupakan negara yang peningkatannya sangat tinggi yaitu dari 43 Qbtu ditahun 2002 menjadi 109 Qbtu ditahun 2025.
Dengan kondisi kebutuhan energi yang demikian besar, beberapa Negara mencanangkan penghematan energi seperti di Jepang, Malaysia, Thailand dll. Di Malaysia dicanangkan program SREP (Small Renewable Energy Power) dan dibentuk Special Committee on Renewable Energy (SCORE) untuk menjalankan program tersebut. Sedangkan Thailand membentuk EPPO (Energy Policy and Planning Office). Dalam kebijaksanaannya EPPO mengarah untuk menekan pemakaian energi dari fosil sampai 70 % dengan Strategic Plan Energy Conservation selama sepuluh tahun. Strategi tersebut diutamakan dalam meningkatkan efisiensi dan ekonomis pada sektor transportasi, industri dan rumah tinggal. Untuk menuju hal tersebut dilakukan pengembangan sumber daya manusia, dan meningkatkan kesadaran masyarakat dengan berbagai kampanye. Untuk arah energy alternative Thailand membentuk DAEDE (Department of Alternative Energy Development and Efficiency). Saat ini Thailand sudah mempunyai energi terbarukan sekitar 17% dari seluruh keperluan energi, dan kemampuan domestic untuk hal tersebut mencapai lebih dari 53%, dan import sekitar 46%.
Penggunaan energi di Indonesia juga seperti yang terjadi di dunia secara umum yaitu meningkat pesat sejalan dengan pertumbuhan penduduk, pertumbuhan perekonomian maupun perkembangan teknologi. Pemakaian energi mix di Indonesia saat ini lebih dari 90% menggunakan energi yang berbasis fosil, yaitu minyak bumi 54,4%, gas 26,5% dan batubara 14,1%. Untuk energi dengan Panas bumi 1,4%, PLTA 3,4%, sedangkan energi baru dan terbarukan (EBT) lainnya 0,2%.
Sedangkan cadangan minyak bumi terbukti saat ini diperkirakan sebesar 9 milyar barel, dengan tingkat produksi rata-rata 0,5 milyar barrel per tahun, maka cadangan tersebut dapat habis dalam waktu sekitar 18 tahun. Cadangan yang diperkirakan untuk gas 170 TSCF (trilion standart cubic feed) sedangkan kapasitas produksi mencapai 8,35 BSCF (billion standart cubic feed) yang dibagi untuk ekspor 4,88 BSCF dan untuk domestik 3,47 BSCF. Cadangan batubara di Indonesia diperkirakan ada 57 miliar ton dan merupakan cadangan yang sudah dieksplorasi sebesar 19,3 miliar ton, dengan kapasitas produksi sebesar 131,72 juta ton per tahun. Sehingga jika tidak ada penambahan eksplorasi, cadangan batubara tersebut akan dapat bertahan selama 147 tahun.
Dari segi cadangan Indonesia masih mempunyai cukup besar, tetapi permasalahan utama yang terjadi di Indonesia adalah kebijaksanaan yang belum dapat memberikan ketahanan energi secara nasional, dimana masih banyak yang belum mendapatkan pasokan energi seperti listrik, produksi minyak yang tidak dapat memenuhi kebutuhan dalam negeri sehingga perlu import, harga minyak yang disubsidi memberatkan keuangan pemerintah, dan jika dilakukan penyesuaian dengan harga internasional terjadi gejolak dimasyarakat karena daya beli yang masih rendah dll.
Saat ini ketersediaan listrik di Indonesia baru mencapai 21,6 GW atau 108 watt per orang, hal itu hampir sama dengan di India yang hanya seper enamnya Malaysia(609 watt/orang) dan jauh lebih kecil dibandingkan dengan Jepang yang mencapai 1.874 watt/orang. Padahal potensi adanya energi listrik di Indonesia sangat besar, yaitu dari sumber energi non fosil seperti panas bumi setara 27 Giga watt (GW), tenaga air 75 GW, biomasa 49 GW, tenaga matahari 48 kWh/m2/hari, tenaga angin 9 GW, uranium 32 GW atau total ada lebih 230 GW dan dimanfaatkan untuk listrik baru 10%.
Ketersediaan energi yang dapat dimanfaatkan oleh masyarakat Indonesia masih sangat rendah yaitu 0,467 toe per kapita, dibanding dengan Jepang yang mencapai 4,14 toe/kapita, tetapi dilain pihak terjadi pemborosan yang sangat besar, yaitu 470 toe perjuta US dolar, sedangkan Jepang hanya 92,3 toe perjuta US dolar.
Untuk mengatasi permasalahan di bidang energi, telah dibuat berbagai kebijaksanaan seperti Kebijakan umum bidang energi (KUBE) sejak tahun 1981 dan telah dilakukan perbaikan pada tahun 1987, 1991 dan 1998. Kemudian Kebijakan Energi Nasional (KEN) dibuat pada tahun 2003. Kebijakan Pengembangan Energi Terbarukan dan Konservasi Energi (Energi Hijau) yang dikeluarkan Departemen Energi dan Sumber Daya Mineral 22 Desember 2003.
Kebijaksanaan yang diatas belum dapat menjawab permasalahan secara menyeluruh, sehingga untuk operasional kebijaksanaan tersebut kemudian dibuat Blueprint Pengelolaan Energi Nasional 2005-2025 yang mencanangkan: Pemakaian energi mix untuk minyak menjadi 26,2%, Gas bumi 30,6%, batubara 32,7%, PLTA 2,4%, Panas bumi 3,8% dan yang lainnya sebesar 4,4% merupakan energi: biofuel, tenaga surya, tenaga angin. Fuelcell, biomasa, tenaga nuklir dll.
Blueprint tersebut belum diformalkan menjadi kebijaksanaan pemerintah, sehingga belum secara nasional mengacu. Untuk itu diusulkan segera dibuatnya undang undang energi sebagai payung utama dalam hal energi, kemudian penyesuaian undang-undang yang terkait dengan undang-undang energi, seperti undang-undang ketenaga-nukliran, kelistrikan, panas bumi, migas dll. Undang-undang tersebut perlu diikuti dengan instrumen-instrumen untuk memudahkan pelaksanaan baik dipusat maupun di daerah.
Juga perlu dilakukan perbaikan kebijaksanaan dalam harga, selain untuk menekan subsidi juga untuk menekan terjadinya penyelundupan BBM keluar negeri, pencampuran berbagai jenis minyak dll. Dalam hal ini koordinasi secara nasional diperlukan, terutama dengan penegak hukum baik Polisi maupun TNI serta perangkat hukum lainnya. Kebijaksanaan didaerah yang saat ini kebanyakan menunggu kebijaksanaan dari pusat, dengan adanya undang-undang energi dan programnya yang jelas dapat menentukan arah pembangunan energi yang ada didaerahnya sesuai dengan potensi yang ada.
Instrumen kebijaksanaan dibidang fiscal yang berkaitan dengan energi sangat penting, seperti diperlukan adanya berbagai insentif secara adil dan konsisten. Insentif yang diperlukan, di antaranya, adalah: pemberian insentif pajak berupa penangguhan, keringanan dan pembebasan pajak pertambahan nilai, serta pembebasan pajak bea masuk kepada perusahaan yang bergerak di bidang energi terbarukan dan konservasi energi; penghargaan kepada pelaku usaha yang berprestasi dalam menerapkan prinsip konservasi energi dan pemanfaatan energi terbarukan; penghapusan pajak barang mewah terhadap peralatan energi terbarukan dan konservasi energi; memberikan dana pinjaman bebas bunga untuk bagian enjinering dari investasi pengembangan energi terbarukan dan konservasi energi.
Penelitian dan pengembangan di bidang energi alternatif dan konservasi energi perlu diarahkan untuk meningkatkan kemampuan nasional di bidang penguasaan Iptek dalam rangka pengembangan industri yang berkaitan dengan jasa dan teknologi energi terbarukan dan konservasi energi melalui kerja sama dengan lembaga atau industri penelitian dan pengembangan unggulan. Selain programnya juga perlu dianggarkan dengan baik, biaya untuk penelitian dan pengembangan yang diambil dari pengurangan subsidi, maupun anggaran khusus yang dapat mengurangi kerugian social ekonomi karena permasalahan pemborosan pemakaian .energi. Anggaran pemerintah untuk energi alternatif di usulkan 2,5% dari angaran subsidi, baik subsidi untuk minyak maupun subsidi untuk listrik dan dari tahun ketahun diberikan prioritas kenaikan untuk mempercepat penyelesaian permasalahan energi.
Instrumen kebijaksanaan pendidikan perlu ditujukan untuk membuka inisiatif masyarakat dalam mengimplementasikan energi alternatif dan konservasi energi. Selain itu diperlukan regulasi keteknikan untuk menjamin penyediaan dan pemanfaatan energi alternatif dan konservasi energi yang berkualitas tinggi, aman, andal, akrab lingkungan.
Juga pemberlakukan standar untuk memberikan jaminan akan kualitas produk, baik produk energi maupun produk peralatan/sistem energi yang diproduksi di dalam negeri ataupun di luar negeri, yang berhubungan dengan energi terbarukan dan konservasi energi.
Jika di Malaysia ada SCORE dan Thailand membentuk EPPO, di Indonesia selain organisasi di Departemen ESDM, telah dibentuk BP Migas. Untuk mengelola khusus energi terbarukan dan konservasi energi, sebaiknya dibentuk badan energi terbarukan dan konservasi energi diluar departemen yang ada.
Hal yang perlu disadari adalah penyelesaian energi nasional tidak dapat diselesaikan dalam jangka pendek, tetapi mencakup kebijaksanaan jangka panjang yang sangat komprehensif. Sangat diperlukan suatu kebijaksanaan makro, jangka panjang secara holistik dan komprehensif yang dilakukan secara konsisten terus menerus.

REKOMENDASI

Cadangan energi di Indonesia masih besar, tetapi belum dapat memberikan ketahanan energi nasional, sedangkan pemakaian energi yang berbasis fosil mempunyai keterbatasan, sehingga perlu dilakukan penghematan dan efisiensi yang tinggi. Terutama untuk energi minyak bumi, selain cadangan yang terbatas kemampuan produksi dalam negeri dari tahun ketahun menurun dan tidak dapat memenuhi kuota dari OPEC.
Untuk itu diusulkan segera dibuatnya undang undang energi sebagai payung utama dalam hal energi, kemudian penyesuaian undang-undang yang terkait dengan undang-undang energi, seperti undang-undang ketenaga nukliran, kelistrikan, panas bumi, migas dll. Undang-undang tersebut perlu diikuti dengan instrumen-instrumen untuk memudahkan pelaksanaan baik dipusat maupun di daerah. Juga perlu ditetapkan program yang jelas, seperti yang tertera dalam blue print energi yang perlu dilakukan sinkronisasi dengan kebijaksanaan perumahan, transportasi, industri maupun daerah komersiil. Hasil blueprint tersebut perlu diformalkan untuk menjadi acuan nasional, sehingga semua kebutuhan yang berkaitan dengan energi harus disesuaikan dengan blueprint tersebut.
Perlu adanya perbaikan kebijaksanaan dalam harga, selain untuk menekan subsidi juga untuk menekan terjadinya penyelundupan BBM keluar negeri, pencampuran berbagai jenis minyak dll. Dalam hal ini koordinasi secara nasional diperlukan, terutama dengan penegak hukum baik Polisi maupun TNI serta perangkat hukum lainnya. Kebijaksanaan didaerah yang saat ini kebanyakan menunggu kebijaksanaan dari pusat, dengan adanya undang-undang energi dan programnya yang jelas dapat menentukan arah pembangunan energi yang ada didaerahnya sesuai dengan potensi yang ada.
Instrumen kebijaksanaan dibidang fiscal yang berkaitan dengan energi sangat penting, seperti diperlukan adanya berbagai insentif secara adil dan konsisten. Insentif yang diperlukan, diantaranya, adalah: pemberian insentif pajak berupa penangguhan, keringanan dan pembebasan pajak pertambahan nilai, serta pembebasan pajak bea masuk kepada perusahaan yang bergerak dibidang energi terbarukan dan konservasi energi; penghargaan kepada pelaku usaha yang berprestasi dalam menerapkan prinsip konservasi energi dan pemanfaatan energi terbarukan; penghapusan pajak barang mewah terhadap peralatan energi terbarukan dan konservasi energi; memberikan dana pinjaman bebas bunga untuk bagian enjinering dari investasi pengembangan energi terbarukan dan konservasi energi.
Penelitian dan pengembangan dibidang energi alternatif dan konservasi energi perlu diarahkan untuk meningkatkan kemampuan nasional di bidang penguasaan Iptek dalam rangka pengembangan industri yang berkaitan dengan jasa dan teknologi energi terbarukan dan konservasi energi melalui kerja sama dengan lembaga atau industri penelitian dan pengembangan unggulan. Selain programnya juga perlu dianggarkan dengan baik beaya untuk penelitian dan pengembangan yang diambil dari pengurangan subsidi, maupun anggaran khusus yang dapat mengurangi kerugian social ekonomi karena permasalahan pemborosan pemakaian energi. Anggaran pemerintah untuk energi alternatif di usulkan 2,5% dari angaran subsidi, baik subsidi untuk minyak maupun subsidi untuk listrik dan dari tahun ketahun diberikan prioritas kenaikan untuk mempercepat penyelesaian permasalahan energi.
Instrumen kebijaksanaan pendidikan perlu ditujukan untuk membuka inisiatif masyarakat dalam mengimplementasikan energi alternatif dan konservasi energi. Selain itu diperlukan regulasi keteknikan untuk menjamin penyediaan dan pemanfaatan energi alternatif dan konservasi energi yang berkualitas tinggi, aman, andal, akrab lingkungan.
Juga pemberlakukan standar untuk memberikan jaminan akan kualitas produk, baik produk energi maupun produk peralatan/sistem energi yang diproduksi di dalam negeri ataupun di luar negeri, yang berhubungan dengan energi terbarukan dan konservasi energi.
Jika di Malaysia ada SCORE dan Thailand membentuk EPPO, di Indonesia selain organisasi di Departemen ESDM, telah dibentuk BP Migas. Untuk mengelola khusus energi terbarukan dan konservasi energi, sebaiknya dibentuk badan energi terbarukan dan konservasi energi diluar departemen yang ada.
http://www.lemhannas.go.id/

Thursday, August 14, 2008

Radioisotope Thermoelectric Generators & Nuclear batteries

You cannot possibly be using portable or mammoth sized fuel-powered generators every where, but then, there are chances that you do need electricity almost everywhere. Since these sources of generating electricity aren't everything you must be relying on, there are other alternatives. While there are some age-old tried ways to producing electricity like Bio-gas, windmills and some other organic sources, Atomic energy has evolved to be quite a miracle source of electric energy.
The potential applications for atomic energy are just unfathomable. There is an amazing potential in the focused energy derived out of atomic energy. The kinds of energy and applications you would have only heard about in science fiction. Imagine batteries that would last for years and years together and generators that could be used on satellites which would be up and away in space, far away from planet earth and even far from any kind of solar energy.
For all the breath-taking scope of applications that these RTGs can be used for, they operative principles are very simple. Semi-conductor like materials are used to bring about a differential in the heat and hence cause electricity to flow.
Now, in the nuclear energy production systems, a radio isotope like Plutonium – 238, is used which has a property of decaying and producing immense heat which is captured and electricity is produced from it. Since the decaying process can take years all together, the process is on until then. This energy emanating out of the radio isotope travels like an alpha particle but has a tendency to die too soon creating heat while doing so, this heat is in turn captured by thermocouples and generate electricity. That gives you the almost unimaginable electricity production ranging over years, non-stop, no moving parts and no maintenance.
Nuclear batteries, Radioisotope thermoelectric generators and more of their ilk have been a possibility due to the same technology and have been used previously on space missions. If you can comprehend the effort, time and money saved due to this perpetual energy when it is used with regular appliances like your laptop or cell phone, you would see almost impossible-to-achieve results.
However, these RTGs are way for commercial use. Steadily increasing the heat producing nuclear matter 'stock-pile', it is also possible to bring down the cost of these amazing power generating technology elements. Gradual increase in awareness and technological advances should be able to bring in all such wonderful alternatives into commercial use and be made accessible to everyone.

Nuclear Power - It's Back?

Nuclear power plants currently provide about 17 percent of the world's electricity, yet how much of the world's current and future environmental problems does Nuclear Power contribute to? Nuclear power has both powerful enemies and friends but does the bottom line come down to costs? The December 2005 World Nuclear Association report The New Economics of Nuclear Power states that "Nuclear power is cost competitive with other forms of electricity generation, except where there is direct access to low-cost fossil fuels". The need for cheap energy can not be argued when every week price increases are announced from all the gas and electricity suppliers in the UK. The Ukraine recently had their gas supply stopped by Russia, how long is it before this happens to the UK? Do we not need to be self-sufficient when it comes to the generation of power? Can renewable energy not begin to take a larger role in this supply? See GuideMeGreen's green directory for renewable energy companies and recycled products in the UK.
The report goes on to say that fuel costs for nuclear plants are a minor proportion of total generating costs, though capital costs are greater than those for coal-fired plants. At the NIA 2006 launch of the Commission's position paper on the role of nuclear it confirmed "that nuclear is a low carbon technology with an impressive safety record in the UK" and "Nuclear could generate large quantities of electricity, contribute to stabilising CO2 emissions and add to the diversity of the UK's energy supply." While we have an impressive record of safety in the UK, Chernobyl has proved that a nuclear accident thousands of miles away can effect the UK for decades to come. The Tsunami also caused problems at Nuclear Power plants around Asia as the plants are built near the sea due to the large amount of water needed to cool the rectors.

Author: David Oglaza

Developing Nuclear Power As Alternative Energy

Many researchers believe that harnessing the power of the atom in fission reactions is the most significant alternative energy resource that we have, for the fact of the immense power that it can generate.Nuclear power plants are very clean-burning and their efficiency is rather staggering. Nuclear power is generated at 80% efficiency, meaning that the energy produced by the fission reactions is almost equal to the energy put into producing the fission reactions in the first place. There is not a lot of waste material generated by nuclear fission although, due to the fact that there is no such thing as creating energy without also creating some measure of waste, there is some.The concerns of people such as environmentalists with regards to using nuclear power as an alternative energy source center around this waste, which is radioactive gases which have to be contained.The radiation from these gases lasts for an extraordinarily long time, so it can never be released once contained and stored. However, the volume of this waste gas produced by the nuclear power plants is small in comparison to how much NOx (nitrous oxide that is, air pollution) is caused by one day's worth of rush-hour traffic in Los Angeles.While the radiation is certainly the more deadly by far of the two waste materials, the radiation is also by far the easier of the two to contain and store. In spite of the concerns of the environmentalists, nuclear power is actually environmentally friendly alternative energy, and the risk of the contained radiation getting out is actually quite low. With a relatively low volume of waste material produced, it should not be a difficult thing at all for storage and disposal solutions for the long term to be developed as technology advances.The splitting of an atom releases energy in the forms of both heat and light. Atomic power plants control the fission reactions so that they don't result in the devastating explosions that are brought forth in atomic and hydrogen bombs. There is no chance of an atomic power plant exploding like a nuclear bomb, as the specialized conditions and the pure Plutonium used to unleash an atomic bomb's vicious force simply don't exist inside a nuclear power plant. The risk of a meltdown is very low. Although this latter event has happened a couple of times, when one considers that there are over 430 nuclear reactors spread out across 33 nations, and that nuclear reactors have been in use since the early 1950s, these are rare occurrences, and the events of that nature which have taken place were the fault of outdated materials which should have been properly kept up.Indeed, if nuclear energy could become a more widely accepted form of alternative energy, there would be little question of their upkeep being maintained. Currently, six states in America generate more than half of all their electrical energy needs through nuclear power, and the media are not filled with gruesome horror stories of the power plants constantly having problems.

By: Warren Peters

Economics of Nuclear Technology

The Economics of Nuclear PowerElectricity GenerationNuclear Technology can also be used to produce ELECTRICITY which is very important according to economical condition of a country. Nuclear plant can produce more electricity than thermal or hydro electric plant.Isotope produced using Nuclear Technology is used in many chemical and pharma companies.

1)Nuclear power is cost competitive with other forms of electricity generation, except where there is direct access to low-cost fossil fuels.

2)Fuel costs for nuclear plants are a minor proportion of total generating costs, though capital costs are greater than those for coal-fired plants.

3)In assessing the cost competitiveness of nuclear energy, decommissioning and waste disposal costs are taken into account.

The relative costs of generating electricity from coal, gas and nuclear plants vary considerably depending on location. Coal is, and will probably remain, economically attractive in countries such as China, the USA and Australia with abundant and accessible domestic coal resources as long as carbon emissions are cost-free. Gas is also competitive for base-load power in many places, particularly using combined-cycle plants, though rising gas prices have removed much of the advantage. Nuclear energy is, in many places, competitive with fossil fuel for electricity generation, despite relatively high capital costs and the need to internalise all waste disposal and decommissioning costs. If the social, health and environmental costs of fossil fuels are also taken into account, nuclear is outstanding.

External costs
The report of a major European study of the external costs of various fuel cycles, focusing on coal and nuclear, was released in mid 2001 - ExternE. It shows that in clear cash terms nuclear energy incurs about one tenth of the costs of coal. The external costs are defined as those actually incurred in relation to health and the environment and quantifiable but not built into the cost of the electricity. If these costs were in fact included, the EU price of electricity from coal would double and that from gas would increase 30%. These are without attempting to include global warming. The European Commission launched the project in 1991 in collaboration with the US Department of Energy, and it was the first research project of its kind "to put plausible financial figures against damage resulting from different forms of electricity production for the entire EU". The methodology considers emissions, dispersion and ultimate impact. With nuclear energy the risk of accidents is factored in along with high estimates of radiological impacts from mine tailings (waste management and decommissioning being already within the cost to the consumer). Nuclear energy averages 0.4 euro cents/kWh, much the same as hydro, coal is over 4.0 cents (4.1-7.3), gas ranges 1.3-2.3 cents and only wind shows up better than nuclear, at 0.1-0.2 cents/kWh average. Fuel costs are one area of steadily increasing efficiency and cost reduction. For instance, in Spain nuclear electricity cost has been reduced by 29% over 1995-2001. This involved boosting enrichment levels and burn-up to achieve 40% fuel cost reduction. Prospectively, a further 8% increase in burn-up will give another 5% reduction in fuel cost.

The cost of fuel
From the outset the basic attraction of nuclear energy has been its low fuel costs compared with coal, oil and gas fired plants. Uranium, however, has to be processed, enriched and fabricated into fuel elements, and about two thirds of the cost is due to enrichment and fabrication. Allowances must also be made for the management of radioactive spent fuel and the ultimate disposal of this spent fuel or the wastes separated from it. But even with these included, the total fuel costs of a nuclear power plant in the OECD are typically about a third of those for a coal-fired plant and between a quarter and a fifth of those for a gas combined-cycle plant. Fuel costs are one area of steadily increasing efficiency and cost reduction. For instance, in Spain nuclear electricity cost was reduced by 29% over 1995-2001. This involved boosting enrichment levels and burn-up to achieve 40% fuel cost reduction. Prospectively, a further 8% increase in burn-up will give another 5% reduction in fuel cost.

Comparing electricity generation
For nuclear power plants any cost figures normally include spent fuel management, plant decommissioning and final waste disposal. These costs, while usually external for other technologies, are internal for nuclear power. Decommissioning costs are estimated at 9-15% of the initial capital cost of a nuclear power plant. But when discounted, they contribute only a few percent to the investment cost and even less to the generation cost. In the USA they account for 0.1-0.2 cent/kWh, which is no more than 5% of the cost of the electricity produced. The back-end of the fuel cycle, including spent fuel storage or disposal in a waste repository, contributes up to another 10% to the overall costs per kWh, - less if there is direct disposal of spent fuel rather than reprocessing. The $18 billion US spent fuel program is funded by a 0.1 cent/kWh levy. French figures published in 2002 show (EUR cents/kWh): nuclear 3.20, gas 3.05-4.26, coal 3.81-4.57. Nuclear is favourable because of the large, standardised plants used. The cost of nuclear power generation has been dropping over the last decade. This is because declining fuel (including enrichment), operating and maintenance costs, while the plant concerned has been paid for, or at least is being paid off. In general the construction costs of nuclear power plants are significantly higher than for coal- or gas-fired plants because of the need to use special materials, and to incorporate sophisticated safety features and back-up control equipment. These contribute much of the nuclear generation cost, but once the plant is built the variables are minor. In the past, long construction periods have pushed up financing costs. In Asia construction times have tended to be shorter, for instance the new-generation 1300 MWe Japanese reactors which began operating in 1996 and 1997 were built in a little over four years. Overall, OECD studies in teh 1990s showed a decreasing advantage of nuclear over coal. This trend was largely due to a decline in fossil fuel prices in the 1980s, and easy access to low-cost, clean coal, or gas. In the 1990s gas combined-cycle technology with low fuel prices was often the lowest cost option in Europe and North America. But the picture is changing.

Future cost competitiveness
The OECD does not expect investment costs in new nuclear generating plants to rise, as advanced reactor designs become standardised. The future competitiveness of nuclear power will depend substantially on the additional costs which may accrue to coal generating plants. It is uncertain how the real costs of meeting targets for reducing sulphur dioxide and greenhouse gas emissions will be attributed to fossil fuel plants. Overall, and under current regulatory measures, the OECD expects nuclear to remain economically competitive with fossil fuel generation, except in regions where there is direct access to low cost fossil fuels. In Australia, for example, coal-fired generating plants are close to both the mines supplying them and the main population centres, and large volumes of gas are available on low cost, long-term contracts. A 1998 OECD comparative study showed that at a 5% discount rate, in 7 of 13 countries considering nuclear energy, it would be the preferred choice for new base-load capacity commissioned by 2010 (see Table below). At a 10% discount rate the advantage over coal would be maintained in only France, Russia and China.

FACTORS FAVOURING URANIUM
Uranium has the advantage of being a highly concentrated source of energy which is easily and cheaply transportable. The quantities needed are very much less than for coal or oil. One kilogram of natural uranium will yield about 20,000 times as much energy as the same amount of coal. It is therefore intrinsically a very portable and tradeable commodity. The fuel's contribution to the overall cost of the electricity produced is relatively small, so even a large fuel price escalation will have relatively little effect. For instance, a doubling of the 2002 U3O8 price would increase the fuel cost for a light water reactor by 30% and the electricity cost about 7% (whereas doubling the gas price would add 70% to the price of electricity).

REPROCCESSING & MOX
There are other possible savings. For example, if spent fuel is reprocessed and the recovered plutonium and uranium is used in mixed oxide (MOX) fuel, more energy can be extracted. The costs of achieving this are large, but are offset by MOX fuel not needing enrichment and particularly by the smaller amount of high-level wastes produced at the end. Seven UO2 fuel assemblies give rise to one MOX assembly plus some vitrified high-level waste, resulting in only about 35% of the volume, mass and cost of disposal. For different fuel costs (fossil fuels) or lead time (nuclear plants). Assumes 5% discount trate, 30 year life and 70% load factor. While the figures are out of date, the comparison remains relevant. Note that the key factor for fossil fuels is the high or low cost of fuels (top portion of bars), whereas nuclear power has a low proportion of fuel cost in total electricity cost and the key factor is the short or long lead time in planning and construction, hence investment cost (bottom portion of bars). Increasing the load factor thus benefits nuclear more than coal, and both these more than oil or gas. (OECD IEA 1992)




Author: Pranav Bhat

Water Energy

Water energy is one of the most overlooked and underrated sources that we have on this earth. Water energy is generally one of the several forms of renewable energy that is available for creating electricity.
Some of the forms of water energy include ocean, wave, tidal, hydroelectric and even geothermal. The most talked about and developed forms of water energy are the latter: hydroelectric and geothermal.
But, in addition to these forms of water energy, a more exciting area of research and development is being conducted on ocean, wave and tidal energy. Some use these terms interchangeably while other see a difference among how the ocean supplies its power to be converted to electricity.
Tidal energy usually involves a basin next to shore where turbines are placed and generate electricity in accordance to the movement of the high and low tides of each day. Turbines that capitalize on wave energy may be place further out to sea in places where the ocean currents turn the turbine wheels to create electricity.
Ocean energy may be seen as either of these two types of energy or it can be ocean thermal energy that one is talking about. In this type of water energy, the sunrays upon the surface of the ocean act as a huge solar collector.
Three types of systems use ocean thermal energy in order to create electricity including closed-cycle, open-cycle, and hybrid. Each of these systems use the water's heat to turn a turbine, which creates electrical current.
This site will explore each of these types of water energy, so that you may not only see what has been completed in this type of renewable resource, but also how much room for growth there is. On a daily basis, we tap only a small fraction of the earth's energy at any one moment, and by conducting more research and development upon water energy, one day we'll be able to put the power of water to work for us and help clean up the environment at the same time. Water you waiting for? Let's get started!
All puns aside, water is renewable and sustainable and we've only tapped into a tiny drop of its power so far. So, let's get moving now.

Solar Renewable Energy - Sun Power


It is no secret that the sun can be harnessed to provide a source of energy for homes and businesses.The sun is a powerful star. It supplies us with energy, through a process called nuclear fusion, and sustains life on our planet Earth. Solar energy, or energy from the sun, has existed since prehistoric times when men would magnify the sun's energy in efforts to start fires. The sun is a valuable resource that radiates enough energy on the United States in one day to meet the nation's needs for one and a half years. Since it is a free, clean and renewable source of energy, it is an energy source that will play a vital role in our future. Using the sun's energy for our energy source seems like an easy solution to having an energy supply forever. Harnessing the suns energy is where the problem lies. The sun's rays shine all over the world and not in just one spot. Although it takes only 8 minutes for sunlight to travel to the earth, trying to catch the rays over such a wide area can prove to be tricky. Also, the energy in any one given place will vary due to factors, such as, clouds and weather conditions. The history of using solar energy began in 1890's when solar water heaters were used in the United States. Solar water heating requires a storage collector and a storage tank. Flat plate solar collectors are mounted on rooftops. Pipes carrying water are pumped through these collectors. The tubes are painted black so they will get hot quicker. As the heat is collected the fluid in the tubes get heated. A storage tank holds the hot liquid. This helps with central heating and cutting fuel costs. Solar heaters became popular when natural gas was expensive and burning wood and coals were burdensome. It's popularity diminished with the discovery of an abundance of natural gas and oil deposits. Now they are making a comeback to replace the depleting fossil fuels that had taken its place. Solar energy can be in the form of heat energy or light energy. The technology of photovoltaic, or PV as it is commonly called, converts the suns energy into electric currents through the use of solar cells. These electric currents can be used instantaneously or stored for later use. The PV cells consist of pieces of silicon under a thin piece of glass. They have both a positive and negative charge. Simple examples of this are the solar powered calculators that are common today. More complex examples are solar panels placed on roofs. This consists of using thin film solar cells as rooftop shingles, roof tiles, and even glazing for skylights. Unfortunately, the cells generate only about one sixth of the sun's energy into electricity. This means bigger arrays are needed and along with this come larger costs. Solar thermal power plants use the sun to heat fluid, which in turn, is transferred into steam similar to fossil fuel burning plants. The steam is transformed into mechanical energy in a turbine and electrical energy from a generator. The downfall is solar plants cannot produce energy on cloudy days. It is expected the next few years will see millions of households using solar energy. As research continues and processes improve, using our sun as a renewable energy source will produce efficiency and cost savings. So, let the sun shine in and take full advantage of this warm energy source where you live.
Source: Free Articles

Radioisotope Thermo Electric Generators: The New Science Nuclear Generators


If you had to orbit the earth, travel to the moon or just hover around in the outer reaches of space, you might not have fared well with normal power generation systems. The far reaches of space, with a total lack of gravity and sheer, bone-chilling cold is quite an obstacle for carrying your favorite large diesel generator for producing electric power out there. There ought to be some way out to counter that coldness, to counter the harsh radiation effects of the sun or Jupiter's Razzle-dazzle or even those one-off comets and hurtling meteors. Something those satellites and space-borne airships have to use, since they are really out of solar energy and other normal generators - Nuclear Power generation systems have served us with this onerous task of providing for energy for more than two decades and radioisotope thermoelectric generators are one such way of doing the same. The Radioisotope Thermoelectric generator consists of two parts: One part which is responsible for producing heat and the other helps in converting this heat into electricity. The heat is produced due to its self - decaying intense radioactive waves by the plutonium - 238, a radioisotope. This resulting heat is converted by a thermo electric converter by utilizing the seebeck effect, a basic thermo electric principle, founded in 1822. A voltage is formed by the diffusion of electrons across the junction of two different metals which then forms a thermocouple. This technology is now being used on space programs and the Galileo Mission, the Mars mission and more modern space programs have employed the nuclear technology for heat and electricity production. Other examples include the Pioneer, Viking, Voyager and Apollo Missions. Safety is a major issue when it comes to producing nuclear energy and lack of adherence to safety norms has resulted in nothing less than fatality. However, radioisotope thermoelectric generators are relatively safer and need only to be contained within secure elements or shells to avoid contamination to the neighboring surroundings. These devices require no maintenance since there are no moving parts and can generate electricity for a number of years. A constant demand for innovation in the way electricity has to be produced for different systems in a sheer variety of situations has made a wide range of types of generators to choose from. Complicated systems have evolved over time to cater to all kinds of electrical needs. RTGs are just the beginning.
Source: Free Articles

Nuclear Power becomes Popular Again


Construction of nuclear power plants declined following the 1986 disaster at Chernobyl. Lately, there has been renewed interest in nuclear energy from national governments, the public, and some notable environmentalists due to increased oil prices, new passively safe designs of plants, and the low emission rate of greenhouse gas which some governments need to meet the standards of the Kyoto Protocol. A few reactors are under construction, and several new types of reactors are planned.As of 2006 there are 442 licensed nuclear power reactors in operation in the world, operating in 31 different countries. Nuclear power plants currently provide about 17 percent of the world's electricity, yet how much of the world's current and future environmental problems does Nuclear Power contribute to? Nuclear power has both powerful enemies and friends but does the bottom line come down to costs? The December 2005 World Nuclear Association report The New Economics of Nuclear Power states that "Nuclear power is cost competitive with other forms of electricity generation, except where there is direct access to low-cost fossil fuels". The need for cheap energy can not be argued when every week price increases are announced from all the gas and electricity suppliers in the UK. The Ukraine recently had their gas supply stopped by Russia, how long is it before this happens to the UK? Do we not need to be self-sufficient when it comes to the generation of power? Can renewable energy not begin to take a larger role in this supply? See GuideMeGreens green directory for renewable energy companies and recycled products in the UK.The report goes on to say that fuel costs for nuclear plants are a minor proportion of total generating costs, though capital costs are greater than those for coal-fired plants. At the NIA 2006 launch of the Commission's position paper on the role of nuclear it confirmed "that nuclear is a low carbon technology with an impressive safety record in the UK" and "Nuclear could generate large quantities of electricity, contribute to stabilising CO2 emissions and add to the diversity of the UK's energy supply." While we have an impressive record of safety in the UK, Chernobyl has proved that a nuclear accident thousands of miles away can effect the UK for decades to come. The Tsunami also caused problems at Nuclear Power plants around Asia as the plants are built near the sea due to the large amount of water needed to cool the rectors. Greenpeace has always fought vigorously against nuclear power because they believe that it is an unacceptable risk to the environment and to humanity and that the only solution is to halt the expansion of all nuclear power, and for the shutdown of existing plants.
Source: Free Articles